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1. Introduction 

To convey the main goal and result of this paper we start by recalling the principal 

steps of the theoretical approach to deep-inelastic scattering. We first introduce the 

moments of the deepinelastic structure function, 

J 

1 
M(q r) = dxB z,“-’ x&(z~, q2) = 

cl / 
O” &e-YYl~BG(xB, &I, 0.1) o 

where w = N - 1, y = ln(l/zs) and T = ln(q2/qi), zg denoting the Bjorken scaling 
variable, and qz an IR cut-off. Each moment is given through a Wilson Operator 

Product Expansion (OPE) in the form 

M&J, r) = c&J, ~i(Plo(2)IP)+&&. r)(plo(4)lp) + . 

+ij&c2i(“’ ‘)@lo(2’)Ip) +. , (1.2) 

where C, is the coefficient function and (~jO(~‘)jp) d enotes generically the expectation 
value of a twist 2i operator in a proton state (see [l] for details). In practice, one 

usually neglects all high twist contributions (i.e. all terms in (1.2) beyond the first), 
by assuming that they are all supressed at large values of Q2 due to the factor of Qm2’ 

in front. It is well known from renormalization group arguments that a coefficient 
function C2i behaves ss 

CZi(W, r) - e-J+, (1.3) 

where y2i is the anomalous dimension of the twist 2i operator I. The anomalous di- 

mension of the leading twist contribution can be calculated using the Gribov-Lipatov- 

Altarelli-Parisi (GLAP) equation and is equal to 

The specific contribution to the anomalous dimensions of high-twist operators orig- 
inating from the exchange of n ‘leading twist ladders’ in the t-channel was found in 

the GLR paper [2]. The result was 

Y2nw = n72(3 (1.5) 

‘for simplicity we consider here the case of a fixed as. 
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Briefly, to illustrate the above statement, consider the twist four contribution. The 

two-ladder exchange leads to the following contribution in this case 

c,(w,r)@10(4)1~) = J ~c2~u~,~,c2~u - w’)(p/o(4)lp) w J~~e’.(w-u~)‘+n(~f)r. 
0.6) 

This integral has a saddle point at w’ = w/2 so C, N exp(2ys(z)r). Thus -y4 = 2ys(T)r. 

Recently Bartels on the one hand [3] and Levin, Ryskin and Shuvaev on the other 
[4] performed the next step in understanding the high twist contribution to (1.1). 

Both groups calculated the anomalous dimension of the twist four gluon operator, 
each using quite different techniques. The value of the anomalous dimension was 

found to be 

Y4b‘J) = 2@[1 + a] = %[I + 61, (1.7) 

with 6 = O((@ - l)-*) x 10m2 small. 

The most important lesson to learn from this calculation is the fact that one 
cannot trust the GLAP evolution equation in the region of small w (or, equivalently, 

large In(l/z,)). Indeed for w smaller than some W, the twist four contribution 

becomes larger than the leading twist one. The value of w, can be found from the 
equation 

%(%r) = -1 +Y46%). 0.8) 

The same conclusion could be arrived at using the GLR approach but in [3,4] this 
statement was proved for the whole set of Feynman diagrams instead of just the 

two-ladder contribution that the GLR approach takes into account. 

In this paper we will calculate the anomalous dimension for an arbitrary high 
twist operator, beyond the result (1.5). The operators in question are so called 

gluonic Quasi-Partonic Operators (QPO’s), which were introduced in [5] and have 
been studied in detail in [6]. Some of their properties relevant to this paper are 

the following: 1) the twist of these operators coincides with the number of gluonic 
fields they contain; 2) under a scale change a QPO can only transform into a QPO 

or in operators that can be expressed in terms of QPO’s using equations of motion. 

The transformation from other operators into QPO’s is possible, but not vice versa. 
Thus, such a transformation cannot change the value of the anomalous dimension; 

3) the evolution equation for such operators looks like a Faddeev-type equation with 
a pair-like interaction (with the number of particles conserved), the kernels of which 

are the same as for twist two operators. The analogy with the Faddeev-equation is 

very important for us since the method by which we will arrive at these anomalous 

dimensions has also been used in the nonrelativistic three body problem (for which 
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the Fsddeev equation was originally derived): we try to extract the resonance-like 

interaction in the two gluon channel first and subsequently take into account the 

interaction between such ‘resonances’. The socalled Pomeron (colorless ladder for two 
gluon exchange in the t-channel) plays the role of such a resonance in our calculation. 

In refs. [3,4] it was shown that the value of the twist four anomalous dimension in 
the double logarithmic approximation is determined mainly by the exchange, and 
interaction, of two colourless gluon-‘ladders’ (Pomerons) in the t-channel, and that 

the interaction between such ladders is small since it is proportional to l/(Nz - 1). 
This indicates that our method of taking into account the two gluon interaction first, 

creating a Pomeron, is right, since it is the correct approach to the problem at least 

as NC + 00. The solution to the problem at finite NC we present in this paper. The 
above observations considerably simplify the problem and will enable us to reduce it 

to solving the Nonlinear Schrodinger Equation for n Pomerons in the t-channel. 
The paper is organized as follows: in section 2 we consider in detail the calculation 

of the twist four anomalous dimension in the two-Pomeron approximation. We can 

find the value of ^/4 by ‘summing’ all diagrams in an explicit way and we will use 

this concrete example to introduce all notations and to illustrate all further steps 
in finding the value of ~z~(w). In section 3 we reinterpret the calculation of Tag 

in terms of a two-dimensional theory describing the interaction of n nonrelativistic 

particles. In section 4 we find the energy of the ground state of this theory, which 
corresponds precisely to yz,,(w). In the conclusions we summarize our results and 

discuss outstanding problems. In Appendix A we discuss some technical details. 

2. The anomalous dimension of the twist 4 operator in the two-Pomeron approximation 

In this section we will derive the anomalous dimension of the twist 4 operator 

from diagrams with four gluon exchange in the t-channel. Our method consists of 
first pairing the gluons up into ‘Pomerons’, and subsequently calculate the interaction 

between the latter. 

The contributions to the anomalous dimensions of the twist four operator due 
to Pomeron exchange can be separated into two cases: in one the Pomerons do not 

interact while being exchanged, in the other they do. We will discuss these cases in 
turn, but begin by discussing just the two-gluon (one Pomeron) exchange to set the 

stage. In addition, this exchange is a building block for the four gluon case. 
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2.1. The Pomeron in the double log approximation (DLA). 

We start from the structure function of a two-gluon colorless state (Pomeron) 

in the DLA of perturbative QCD (pQCD), see Fig.1. We will generically denote this 
function by F(z,q’). This is astep-up to our discussion of the four-gluon state later on 

in this section. We discuss this function for two cases, distinguished by the variable qt, 
the transverse momentum along the ladder. In the first qt = ql, - q2t = qo,lt - q,,2t = 0 

(see Fig.1 for notation). The two-gluon structure function can be calculated directly 
from the GLAP [7] evolution equation, with kernel 

0s - =s P(z) = - = y, 
?rz (2.1) 

where we have dropped terms that are non-singular as z + 0. In DLA the GLAP 
evolution equation can be written in the form 

F(z, & = &) = 723 
’ dt J J 

I”+l”i; 

2 T 
0 

drF(;,r). (2.2) 

where the hat indicates that the momentum has been divided by the corresponding 

lower cut-off momentum, e.g. in = qlc/qo,lt, etc. The choice of IR cut-off of the GLAP 
evolution equation is arbitrary. In Fig.1 we depicted the cut-off to lie somewhere along 

the ladder, but we could have also chosen it be close to the ‘blob’, in which case we 

would have qo,+ N q0,2f N l/R,, very small. Eq. (2.2) can be simplified further by 
performing two Mellin transforms, one with respect to y = In(l/s), as in (l.l), the 

other with respect to r, 

J - JT.4f) = dr e-I’+, r). (2.3) 
0 

In w, f representation eq. (2.2) has the form 

Wf = Es. 

We define G,(w, f) by 

(2.4) 

It gives the Green function of the GLAP equation in DLA, which satisfies G,(z,qf) = 

O( In($)) at z = 1. 
In the second case we have qt f 0, in other words momentum is transferred along 

the ladder. We will encounter this situation a little further on. Within DLA, the 

contributions come from two regimes: 1) q: << q::, = q$ and 2) qf x q,&, >> q&t, 

with qizt N l/R:. In spite of the fact that now qll # qzr the two gluon structure 
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function in essence still depends only on one virtuality in these regimes, viz. the 
smallest one. E.g. for Iq2,j < \qltl, we have, for both regimes 

F(cr, &, &) = (qo,g;.,J F(s, &, (2.6) 

For values of qt other than the ones discussed in this subsection one does not find a 
large logarithmic contribution. The derivation of and all details related to eq. (2.6) 

can be found in refs. [2-4,7]. We now go on to discuss the four-gluon structure 

function. 

2.2. Two-Pomeron case (2P). 

Let us consider now the simplest diagram that gives a contribution to the four- 

gluon structure function and thus to -y4, namely the exchange of two ‘leading twist’ 
ladders (see Fig.2). In DLA we can neglect the dependence of the deepinelastic 

scattering structure function on the momentum qt (see [2] for the relevant discussion), 
and the contribution of this diagram can be written in the form 

c4(w,r = 1n(QZ))(p]OC4)]p) I*r = J ‘&~(w’,r)~(u-w’,r) < S> 
= dfeJ’Gz(w’,f)G2(W--UI,f-f)~ J <S > (2.7) 

where < S > stands for the integration over ~7~ of the matrix element that describes the 

emission of 4 gluons from the nucleon. Substituting eq. (2.5) in (2.7) and performing 
the integrals over w’ and f’ by contour integration we get 

c4(~~~0(4)1p) lzp = J $ufj& < s >. (2.8) 

WJ 

The contour of integration over f is located to the right of all singularities in this 

variable. From (2.8) one can easily see that the main contribution comes from f + 

% and it is proportional to exp(% r). Thus the contribution to the value of the 
anomalous dimension from the diagram in Fig.2 is 

y4=!3. 
w (2.9) 

This will turn out to be the most significant contribution to y*. 
An alternative method of derivation consists of using the saddle point method 

for the f’ integral, as was done for the w’ integration in (1.6). Starting with (2.7), 
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applying an inverse Mellin transform with respect to w and performing the w,J 
integrals by contour integration one obtains 

c,(y,r) x J y~~yle /1- t-5+-LrF’su e f ‘-I 
One can now do the f’ by the saddle point method, yielding the saddle point f’ = f /2. 

For n ladders one would obtain 

(2.11) 

Changing variables f + 4hs/w then yields 

~,(~,r) - Jciu e++y 
and thus we find again r,, = 4Zs/w. 

2.3. Pomeron interaction (PI). 

However, although (2.9) is the most significant contribution to -yd, it is not the full 
answer. As was shown in ref. [3,4] the Pomeron-Pomeron interaction crucially changes 

the value of the anomalous dimension. In this subsection we want to understand this 

statement, and to that end let us consider the diagram in Fig.3, which displays 
this interaction. We will discuss here the contribution to C, < ~lO(~)lp > from this 
diagram. All notation is explained in the figure, where all y’s are rapidities and all 

other symbols are transverse momenta. (E.g. ki is the transverse momentum at rung 

i in the ladder in the left upper part of the diagram.) 
Clearly, there are two distinct parts to this two ladder diagram: the top and 

bottom half, and we will discuss the contribution from this diagram accordingly. The 

obvious distinction from Fig.2 is that the two ladders in the top half are ‘interchanged’ 
in the bottom half. The main contribution from this diagram in DLA is when all 

momenta in the top half (above the dashed line) of the diagram are larger than all 

momenta in the bottom half, yet smaller than Q2. Note that while there is momentum 

transferred along the ladders in the top half, that is not the case in the bottom half. 
As far as the momenta in the bottom half are concerned, we assume I: >> 1;. 

The case 1; >> l: gives precisely the same answer, so we only discuss the former. 
The IR cutoff momenta 1 o,r,10,2 are small, 0(1/R,). Each individual (piece of a) 

ladder behaves as described in subsection 2.1, either with (top) or without (bottom) 
momentum transfer along the ladder. In this sense the two-gluon structure function 

is a building block for the four-gluon structure function presently under study. The 
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contribution of the diagram in Fig.3 is 

C4P’,Q*M0(4)I~) IP, = (2.13) 

112z y -- 
2N,2-1 ’ o J J dy, 

4’ dl: 
-p-w - Yl?TQ - rr,? 

‘:.I ’ 

x(~~~“dy~~(y;,~,:)~~~d~~f’(?l2~~~~) 

+~Y’dy~~yzd~~~~~(y~,r,:)~~~~dy~fl(y~~~i~)] 

where F(y,r) is the two-gluon structure function from subsection 2.1, and p(y, r) = 

&&F(y,r). As under (1.1) we define r,, = ln(l:/l:,,), etc. 
We will now explain the construction of the contribution in (2.13) piece by piece, 

starting with the prefactors. First, due to the fact that there is momentum transfer 

along ladders in the top half of the diagram, and we thus have to employ (2.6), we 
need to take into account the momentum factor in eq. (2.6) and carefully integrate 

this factor over the angle between Izt and I,,. It gives an additional factor l/2 in front 

of the whole expression. Note that there is no such factor for the bottom half. Second 

the color factor in front of the diagram of Fig.3 is smaller than for the diagram of 

Fig.2, by a factor of l/(Nz - l), see Figs.4a and 4b. Third, there is a factor of 2 from 
the bottom half due to the combinatorics of connecting the rungs to the ‘vertical lines’. 

Fourth, the explicit factor of Es means that even at lowest order, we have 1 rung for 
this contribution. Not having this would mean that the lowest order corresponds to 

the lowest order for the two-ladder exchange contribution discussed in the previous 
subsection. Thus we avoid double counting. 

We remark that, because we work in DLA, besides the momenta, also all rapidi- 

ties are strongly ordered and decrease from top to bottom along ladders. The factors 

on the first line of (2.6) correspond to the two ladders in the top half of Fig.3. The 

transverse momenta here range from Q* down to I:,, the momenta at the boundary of 
the top and bottom half. The expression in curly brackets corresponds to the bottom 

half of Fig.3, the two terms within these brackets corresponding to the case y2 < y,, 
and the second to y, > yr (we have interchanged integration variables y, and yr for 
this term). Eq. (2.13) then is the contribution of Fig.3 summed over all possible 

values of yr and 1:. 

We now need to perform the integrals in (2.13). This is discussed in the appendix. 

7 



The final answer is 

c4(W,T)@10[4)lp)lpl = 6. J $f ~f&.e+-{~~-lJ<s’ W4) 

where b = l/(Nz - 1). Next, we will add the contributions from the previous two 
subsections to all orders in the Pomeron coupling. 

2.4. The value of the anomalous dimension. 

To get the value of the anomalous dimension we need to sum up all diagrams 

with Pomeron-Pomeron interaction. For two Pomerons is it easy to get the answer, 
due to the fact that we only need to sum all diagrams of Fig.5. They form a geometric 

series, the first two terms of which are given in (2.8) and (2.14). Using this, the sum 
can be written in the form 

c4(w,r)(P10(4)IP) = J 2 
.,~q&5[.*4) <s’ 

w 

from which we see that there is a pole to the right of wf = 4E,, namely at 

l-,[J& 
-l]=O, fs=5(1+62). 

Near this singularity the Green function has the form 

26 
wf - 4Es( 1 - 62) 

Directly from eq. (2.17) we can get the value of the anomalous dimension 

~4 = 4Wl + J2) 
w 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

The rather complicated form of the term in brackets in eq.(2.15) originated in the 

sum of two terms in eq.(2.13). However, none of these complications are essential in 
the vicinity of the rightmost pole. Indeed we can consider both terms in eq. (2.13) as 

equal and write down the contributions of the diagram in Fig.3 in the following way 

(2.19) 

where X = 4Es/(A’,2 - 1) = 4iji,J. This expression has a transparent meaning, namely, 

it describes the interaction between two particles with the Green function of eq.(2.5). 

8 



This interaction is attractive, even though X > 0. This is explained in the next section, 

under eq.(3.3). The sum of the diagrams of Fig.5 gives then 

(2.20) 

It is easy to check that in the vicinity of wf = 4ES(1 + Js) this equation gives the 
same pole as eq.(2.17). 

3. The effective two-dimensional theory. 

To calculate the anomalous dimensions of higher twist operators we develop here 

an approach via an effective two-dimensional theory, noting that the rescattering of 
Pomerons does not change the number of Pomerons (see Fig.6). It means that in 

fact we are dealing with a quantum mechanical theory. To specify it, let us note that 
in (w, f) representation the ‘Pomeron’ propagator of eqn. (2.5) can be treated as 

the propagator of a two-dimensional particle which is written in light-cone variables. 
The variables w and f play the role of momenta k, and k-, and fi the role of 

mass. The total ‘momentum’ is conserved in interactions. As we showed above, the 
leading two-Pomeron pole is located near the value of the branchpoint 4ES, whereas 

the Pomeron-Pomeron interaction X = 4ESJ can be considered small compared to the 
Pomeron mass. This will enable us to use a nonrelativistic approach to the n-Pomeron 

interaction problem. 

To specify this theory let us consider an arbitrary diagram with n Pomerons 
in the t-channel. In the w, f representation the propagator for n Pomerons can be 

written a.5 

The sum C; fk = f is conserved throughout all diagrams. Eq. (3.1) can be obtained 

by integrating eq. (2.5) for each Pomeron in the t-channel separately over wc (wk = 

w,.,,, = %). N ow e us introduce a new variable Ai such that 1 t 

(1+ iA,); = fk. 

The expansion around f/n looks very natural since we believe that, due to the small- 

ness of the interaction X = 4ES/(N,2 - 1) at large NC the dominant contribution to fk 
in the integral comes still from the saddle point approximation value fk = f/n (2.11). 

Assuming that Ak << 1 and taking into account that C; Ak = 0 we can get instead 
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of (3.1) the following expression for the propagator 

@, - ?$f + T 2 A;)-‘, 
k 

Let us interpret this propagator as (N-&)-r where H is some nonrelativistic Hamilto- 

nian p2/2m and &. one of its eigenvalues. Here E,, = --w + (Es/f)n2 and m = f /2Zsn. 
One should note, however t,he essential difference between the usual quantum me- 

chanical system and the Pomeron one. Due to opposite sign of w and &,,, the pole 
corresponding to the bound state of n-particles will be not to the left, as is usual, but 

to the right of the multiparticle-threshold branchcut, with branchpoint nES. This 
sign is also the reason that in (2.20) X > 0 corresponds to an attractive interaction. 

As explained in section 2, we need the rightmost singularity in f, which translates 

into the lowest value of &“. Thus, our task is to formulate the theory specified by H 
and determine its groundstate energy, the energy of its n-particle bound state. 

We can now write down for the n-Pomeron system the following Hamiltonian 

H = & c Aia:a, + x 1 o!&rkukr 
k k 

where a:,a, are bosonic creation- and annihilation operators. This corresponds to 
the coordinate space form J dx &C),$‘~?,li, + X : $t@+!$ :, or, after resealing z: 

H = J dxQb+a,ll, + r, : $+Q+$G :, r, = &. 

4. Solution with Bethe An&z. 

The Hamiltonian (3.5) is well known, and methods have been developed to find 

its spectrum (8), for certain boundary conditions. Our task is to find the energy of 

the ground state for the n-Pomeron system in the t-channel, which corresponds to 
finding the simultaneous eigenfunction and eigenvalue of the Hamiltonian in (3.5), 

and the number operator 

N = J dx : $+(z)$(z) : . (4.1) 

In other words. we would like to solve 

WA) = OA) > NI%) = 4tin) 

The standard procedure of solution is given in [S], but we repeat here the outline for 

completeness. 
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The Bethe ansatz method consists of parametrizing the eigenfunction as 

1~“) = ~Jdnzx,(z,,....~,)yif(~,)...~+(2,)~o). (4.3) 

where 10) is the Fock vacuum defined by 

$qx)lO) = 0 ; (OIti+(Z) = 0 ; (010) = 1 (4.4) 

For the function x,, eq. (4.2) can be rewritten in the form 

%x, = Enx,, (4.5) 

where 

(4.6) 

Eq. (4.5) can be solved now as follows. From (4.6) we see that for the sector zr < 

z2 < . . < z, x,, is an eigenfunction of the free Hamiltonian 

“+g 

j=l “2: ’ 

‘tl:x”, = &x0, (4.7) 

The interaction term in (4.~3) contributes only to the boundary conditions 

( a - - $x. = XX” 1 azj+l I (zj+* = ij + 0, j = 1.. n). (4.8) 

The eigenfunctions in (4.7) are obvious: 

with eigenvalue 

xz = det eiKj’k, 

En =-2~;. 
j=l 

(4.9) 

(4.10) 

The eigenfunction x, has been found in [8] and is 

a a -- X, = Constnj>kCaz, z + i) det einjrk. (4.11) 
1+1 1 

This x, satisfies both (4.7) and (4.8). (see [8] for details). The determinant can be 

written as a sum over all permutations P of the number 1 n: 

,-Je+,e'"j"t = ~(-)~p~ei~~“P~‘k, (4.12) 
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where [P] is the parity of the permutation. Substituting (4.12) in (4.11) and perform- 
ing all derivative operations one obtains 

xn = ConstC(-)(PIIIj,k(nPj - K~, - ik(z, - z~))~‘C.~~~‘~ 
P 

where E(K) is the sign-function. To determine the values of tiEi we have to invoke a 
boundary condition for our n-particle system. We assume that the ground state for 
this system occurs when the n-particle wave function falls down exponentially when 

any zi + 00 (i.e. for the n-particle bound state), with the additional condition 

gKi =O. (4.14) 

which means that we are in the center of mass of the n-particle system. The solution 

was already found in [9] and is simply: 

n; =( 
2k-3iJ 

k=1,2,...,n 

Substituting (4.15) in (4.10) we can calculate 

En = 2Ei = -e(~y)' = g(n3 - n). 

j=1 j=l 

(4.15) 

(4.16) 

So finally the value of the anomalous dimension for the twist 2n operator is 

Y2” = z$(l + c(n2 - l)), (4.17) 

where b = (Nz - 1)-l. This is our main result. 
Let us illustrate (4.15) by giving two examples. First, we discuss the two- 

Pomeron case (i.e. the anomalous dimension of the twist four operator). Since we 

have already considered this case separately, it is instructive to see if we obtain the 

same result as in section 2 from the Bethe ansatz. The eigenfunction (4.13) for the 
case n = 2 is equal to 

x2 = (K* - Kc1 - ~~)e’(~l~l+~Z~2) _ (/$ _ n2 _ j~)e’(K’lzl+‘(,zl) , *1 < 22, (4.18) 

Using the constraint or + ICY = 0, we can write 

x2 = (K~ - tcl + iX)e’“‘(‘2-‘l) - (K~ - fc2 + iJ)e-i*~(r~-rl) , *I < z2. 

12 
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From this equation we derive that ICY - n, = 2~~ = -iI if we demand exponential 
fall-off of the wave function as z2 - zi -+ co. Substituting 2~, = -ix in (4.18) and 

normalizing the wavefunction we find 

x2 = -& e-I~II.2-~II/~, 

With (4.16) and the prescription below (3.3) we recover our old result for y4(w) 

74(w) = ?(1+ Ci2). (4.21) 

Next we discuss the three-Pomeron case (i.e. the anomalous dimension of the 

twist six operator). We can write the wavefunction xz(zi, zz, zs) according to (4.13), 

as follows 

x3 0: eir+ll++zl (K32 -iii)(n,, - iX)(K21 -ii) 
+e-+21+‘“+“~(fc31 +ii)(K21 +ix)(K,,-iq 
+ e-ir+=-iz,rr,l (/c*1 - iX)(K,, + iq@c,, + ii) 
+ e’=+~l+iz+,l (/c3* + izi)(n,, - i;i)(K31 -iii) 
+ ei*~a~+r~r~~ (fc31 - iX)(K,, - ir;)(/c*l + ix) 
+ e-i’JK31-‘22”32(tc21 +iX)(n,, +iX)(n,, +iJi) (4.22) 

where ~~~ = 6i - K~. Here we have factored out the center of mass coordinate T = 
(zi + z2 + zs)/3, ordered the imaginary parts of the n’s (SK, > SK, > S&i) and used 
the relative coordinates zi = ti - r, i = 1,2,3. We also employed the relation n, + 

K2 + Kc3 = 0. 
From this example and the previous one we can easily understand why (4.15) is 

the solution. Indeed, let us assume that rs >> z2. The terms with a plus sign for the 

zs give a rising exponent. Thus the coefficient in front of such a term must be zero. 
The solution (4.15) for the case n = 3 accomplishes just that. The wavefunction for 

this case is then 

x3 = ~e21~31~+14 ) x < 0, (4.23) 

The above generalizes to arbitrary n [9]. W e conclude this section with the observa- 
tion of a remarkable feature of the solution of the n-Pomeron exchange amplitude: 

although we started out with a completely bosonic system, we find a non-degenerate 
momentum spectrum, implying that in this sense the Pomerons behave as fermions. 

Fig.7 shows the one particle levels in our system of interacting bosons (Pomerons) 
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and it is easy to see that the direction of motion plays a role in the spin of the fermion 
since each level has two Pomerons moving in different directions. We believe that the 

understanding of this property is another important result of this paper. We will 

discuss it further in the conclusions. 

5. Conclusions. 

Let us repeat our main assumptions which led us to the value of the anomalous 

dimension of eq. (4.17). 
1) We assumed that only Pomeron-Pomeron interactions contribute to the value 

of ~z,,. The experience from the exact solution of the next-to-leading twist anomalous 

dimension taught us that other color states in the t-channel for four gluons, due to 
diagrams such as depicted in Fig.8, lead simply to a renormalization of X. Such a 

renormalization can easily be accounted for by replacing X with i, taking the latter 

from [3,4]. 
2) The problem of the contribution of color states in the system of 6 or more 

gluons, which would induce a direct interaction between 3 and more Pomerons (see 

Fig.9) is still an open one. 
3)We would like to stress again that we can trust the answer of (4.17) only if 

6n*/3 << 1, which reflects our assumption that Ab << 1. 

Our calculated value of yz,, leads to the following new insights. 
Firstly, we cannot trust the GLAP evolution equation in the region of small us 

(or w --t 0), since the high-twist contributions rapidly become more important in the 
Wilson OPE than the leading twist one. Recall that the GLAP evolution equation can 

be used only to calculate the anomalous dimension of the leading twist contribution. 
Secondly, to obtain the correct evolution equation in the region of small 5s we 

need to sum all high-twist contributions in the Wilson OPE. The nonlinear GLR equa- 
tion is an example of an evolution equation that does take into account all high-twist 

contributions, but it should be noted that this equation assumed for the anomalous 

dimensions the simple value yz, = E s n*/w. Thus the result of the present paper shows 

that the GLR equation cannot be valid and could only have some numerical accuracy 

related to small values of 6’. In other words, only in the limit NC + cc does the 

GLR equation correctly take into account the high-twist contributions which induce 
shadowing corrections. 

Thirdly, the calculated value of yzn shows us that the theory with a large number 
of colors (NC --t co) cannot be a good approximation to reality, since the high-twist 

contributions with n > NC are larger than the ones with n < NC. 

Finally, we found a remarkable regularity in the bosonic system of 2n gluons in- 
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side of the parton cascade: they behave in a certain sense as fermions. The direction 

of motion plays the role of spin here, and obeys Fermi statistics. The above prop 
erty is the direct consequence of the two-dimensional character of our DLA theory. 

The nonrelativistic, fermionic nature of our system allows us to understand why the 
bosonic system does not collapse, in spite of the attractive forces acting betweens 

the bosons (Pomerons). This result, perhaps, indicates a way to a more systematic 
statistical description of the parton cascade in a situation with a large parton density. 

Some open problems spawned by these considerations are the following. First, it 
should be understood what the restricted kinematical region is where the nonlinear 

GLR equation is sufficiently accurate in estimating the value of shadowing correc- 
tions. Second, we need a generalization of the GLR equation which includes the 

correct behavior of yZn when w + 0. And finally, the calculated value of ~z,, shows 
that deviations from the GLAP equation in deep-inelastic scattering and other hard 

hadronic processes should enter earlier than was estimated in the framework of the 
GLR equation. This is perhaps encouraging in the search for experimental signals of 

shadowing corrections. 

Appendix A 

In this appendix we derive (2.14), starting from (2.13). We start by transforming 
this expression tow, f space by applying l_“, dY exp(-wY) ST= dr, exp(-fro). Since 

the complete integral vanishes for negative Y and r4, we have extended the mtegrals 
down to -co to facilitate our calculations. We now focus on the overall factor F(Y - 
y,, rQ - rr,)* first, and use the representation 

F(Y,T) = 
J 

g$G*(u’, f’)P’y+“r, 

with G, given in (2.5). Performing the Y and rQ integrals (after a change of variables) 

we obtain, similarly to (2.7) ,(2.8), the factor 

(Nz 1) 

The remainder then takes the form 
00 

I J 

cc 

dy, 
dr ‘I -m --co e-WvI-fr,, Jf$Jf$ 

, e%Yl ffz’l* 
(1+~~~;~~;~w*f2-ii. 

1 s 
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Performing the integrals over y1 and r,, yields a product of J-functions: 6(w -wr - 
w,)6(f - fr - fs). Next one performs the W, integral by closing around the poleZS/fi. 

Then using the J-functions for the wr and fr integrations one is left with 

J dfz wf2 1 
2?riwf2-~~wf2(f-f2)-~~f’ 

This integrand has poles in fi at f,” = 5$/w and f: = f(1 f J-)/2. The 
contour of fi runs to the right of f,“, but we can close it either to the left or to the 

right, since there is no longer an exponent to guide us. It is easy to see that in the 
limit of large w the pole f; migrates to f,“, so that we best close the contour on to 

the right, picking up only the f$ pole. After some straightforward algebra we find 

that the result for the integral in (A.4) is 

Combining this with the result for the overall factor in (A.2), and multiplying by 2 

to take into account the case 1; >> 1:, we arrive at (2.14). 
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Figure 1. 

FIGURE CAPTIONS 

The two-gluon structure function F(z, qf, 4;). qlr and qzt are the transverse compo- 

nents of the gluon momenta q, and qz, whereas q,,lt and q,,,2t are cut-off momenta. 

Figure 2. 

The two-ladder contribution. Q2 is the photon mass, qi is an IR cut-off. qt is the 
transverse momentum along the ladder. 

Figure 3. 
A twist-four contribution to the gluon structure function. Here ki, mi, qt, I, and 1, 

are all transverse momenta, all ‘y’ ‘s are rapidities, and the IR cut-off momenta I,,,, 
I,,, are both of order l/R,,. 

Figure 4. 
Fig. 4b shows that at the same order in as the two-ladder contribution has one power 
of Nz - 1 more than the Pomeron interaction contribution in Fig. 4a. Again, the 

Pomerons are represented by gluon ladders. The wiggly lines also represent gluons. 

Figure 5. 
A ladder of Pomeron-interactions, whose contribution is given in (2.15). 

Figure 6. 
Pomeron interactions. Note the total number of Pomerons is always constant. 

Figure 7. 
One particle levels for Pomerons in the t-channel for fixed n (here n=8). Note that 

there are two states per energy level, and that thus the direction of motion behaves 
as a spin quantum number. 

Figure 8. 
Interaction of non-singlet ladders. This leads to a renormalization of the coupling A. 

Figure 9. 
Three Pomeron interaction. This has not been taking into account in this paper. 
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